
i
i

“real-time-computing-hp1” — 2023/12/18 — 18:29 — page 233 — #251 i
i

i
i

i
i

Motor Control, Finite-State Machines, and Waiting for Real-Time Computing 233

problem L4.1, you will compute the number of clock cycles in the wait()
function.

Table 4.6. Opcode times (CPU cycles), for instructions used in wait()

Instruction Type Mnemonic Clock Cycles

Load/store registers LDR, STR 2
Branch BNE, B, BX 0
Stack PUSH, LDMFD 2
Arithmetic ADD, SUB, CMP 1
Move MOV 1
No operation NOP 1

Header Files The following header files will be required by your code:
#include <stdio.h>
#include "Encoder.h"
#include "MyRio.h"
#include "DIO.h"
#include "T1.h"
#include "matlabfiles.h"

Emulation: a Debugging Aid To fully debug and test your code, your develop-
ment system laptop must be connected to a myRIO with the amplifier, motor, and
encoder attached as described in appendix A.2. You will be able to observe the
motor motion and see your pulse modulation waveform on an oscilloscope.
However, as a debugging aid, our T1 C library includes a software emulation

(a dynamic model) of the PWM digital channel, the encoder, the amplifier, and
the motor. The emulator allows you to run your code and save the MATLAB file
without needing to be connected to the amplifier and motor. By this means, you
can debug your program on a myRIO without the hardware.
To activate the emulator, #include the header file emulate.h. Without any other

changes in your code, the I/O for the DIO and Encoder interfaces is redirected
through the emulator. When you want to execute your code on a myRIO using the
hardware interfaces, comment out the included emulator header and rebuild the
project.

Emulator Limitations
1. The emulator runs only at a 100 percent duty cycle.
2. You will not be able to view your PWMwaveform.
3. Because there is no stop switch when using the emulator, declare an integer, i,

initially set to 125 in the high() state function. Decrement i each time low()
is executed. When i is zero, go to the stop state.


